首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   17篇
  国内免费   10篇
测绘学   2篇
大气科学   15篇
地球物理   122篇
地质学   172篇
海洋学   134篇
天文学   81篇
综合类   5篇
自然地理   24篇
  2023年   4篇
  2021年   9篇
  2020年   6篇
  2019年   25篇
  2018年   9篇
  2017年   10篇
  2016年   16篇
  2015年   3篇
  2014年   24篇
  2013年   22篇
  2012年   13篇
  2011年   15篇
  2010年   21篇
  2009年   25篇
  2008年   24篇
  2007年   33篇
  2006年   28篇
  2005年   33篇
  2004年   10篇
  2003年   16篇
  2002年   8篇
  2001年   14篇
  2000年   10篇
  1999年   19篇
  1998年   13篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   10篇
  1986年   9篇
  1985年   10篇
  1984年   6篇
  1983年   10篇
  1982年   6篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   9篇
  1977年   4篇
  1976年   2篇
  1974年   3篇
  1972年   2篇
  1970年   2篇
排序方式: 共有555条查询结果,搜索用时 593 毫秒
51.
52.
53.
Abstract   The lithology of shallow-water carbonates collected from 19 sites on 16 seamounts in six areas of the northwestern Pacific Ocean using the Deep-sea Boring Machine System are described. The areas include the Amami Plateau, Daito Ridge, Oki-Daito Ridge, Urdaneta Plateau, Kyushu-Palau Ridge and Ogasawara Plateau. Chronological constraint is provided by calcareous nannofossil biostratigraphy, planktonic foraminiferal biostratigraphy, larger foraminiferal biostratigraphy and strontium (Sr) isotope stratigraphy. Large amounts of shallow-water carbonates accumulated on the seamounts during the Oligocene, a relatively cool period, whereas limited carbonate deposits formed during the Early Miocene, a relatively warm period. This might indicate that deposition of shallow-water carbonates on seamounts in the northwestern Pacific Ocean was not necessarily controlled by climatic conditions, but was related to volcanism and tectonics that served as foundations for reef/carbonate-platform formation. Remarkable differences in biotic composition exist between Cretaceous and Cenozoic shallow-water carbonates. Late Cretaceous shallow-water carbonates are distinguished by the occurrence of rudists, solenoporacean algae and microencrusters. Middle Eocene to Early Oligocene shallow-water carbonates are dominated by Halimeda or nummulitid and discocyclinid larger foraminifers. Scleractinian corals became common from the Oligocene onward. Nongeniculate coralline algae and larger foraminifers were common to abundant throughout the Eocene to the Pleistocene. The replacement of major carbonate producers in the shallow-water carbonate factory during post-Cretaceous time is in accordance with previous studies and is considered to reflect a shift in seawater chemistry.  相似文献   
54.
Abstract The 1995 Kobe (Hyogo-ken Nanbu) earthquake (MJMA 7.2, Mw 6.9) occurred on Jan. 17, 1995, at a depth of 17 km, beneath the areas of southern part of Hyogo prefecture and Awaji Island. To investigate P-wave velocity distribution and seismological characteristics in the aftershock area of this great earthquake, a wide-angle and refraction seismic exploration was carried out by the Research Group for Explosion Seismology (RGES) . The profile including 6 shot points and 205 observations was 135 km in length, extending from Keihoku, Northern Kyoto prefecture, through Kobe, to Seidan on Awaji Island. The charge of each shot was 350–700 kg. The P-wave velocity structure model showed a complicated sedimentary layer which is shallower than 2.5 km, a 2.5 km-thick basement layer whose velocity is 5.5 km/s, overlying the crystalline upper crust, and the boundary between the upper and lower crust.
Almost all aftershock hypocenters were located in the upper crust. However, the structure model suggests that the hypocenters of the main shock and some aftershock clusters were situated deeper than the boundary between the upper and lower crust. We found that the P-velocity in the upper crust beneath the northern part of Awaji Island is 5.64 km/s which is 3% lower than that of the surrounding area. The low-velocity zone coincides with the region where the high stress moment release was observed.  相似文献   
55.
56.
A new multi-anvil type high-presure apparatus has been developed using sintered diamond anvils to generate pressures over 30 GPa and temperatures up to about 2000°C. A maximum sample volume of about 1 mm3 is available in this system. The pressure was confirmed by dissociation of forsterite into Mg-perovskite and periclase. The basic techniques and problems in utilizing sintered diamond in the MA8 type high-pressure apparatus are discussed with an emphasis on the future prospect of incorporating simultancous X-ray diffraction observation.  相似文献   
57.
The Timor–Tanimbar islands of eastern Indonesia form a non-volcanic arc in front of a 7 km deep fore-arc basin that separates it from a volcanic inner arc. The Timor–Tanimbar Islands expose one of the youngest high P/T metamorphic belts in the world, providing us with an excellent opportunity to study the inception of orogenic processes, undisturbed by later tectonic events.Structural and petrological studies of the high P/T metamorphic belt show that both deformation and metamorphic grade increase towards the centre of the 1 km thick crystalline belt. Kinematic indicators exhibit top-to-the-north sense of shear along the subhorizontal upper boundaries and top-to-the-south sense in the bottom boundaries of the high P/T metamorphic belt. Overall configuration suggests that the high P/T metamorphic rocks extruded as a thin sheet into a space between overlying ophiolites and underlying continental shelf sediments. Petrological study further illustrates that the central crystalline unit underwent a Barrovian-type overprint of the original high P/T metamorphic assemblages during wedge extrusion, and the metamorphic grade ranged from pumpellyite-actinolite to upper amphibolite facies.Quaternary uplift, marked by elevation of recent reefs, was estimated to be about 1260 m in Timor in the west and decreases toward Tanimbar in the east. In contrast, radiometric ages for the high P/T metamorphic rocks suggest that the exhumation of the high P/T metamorphic belt started in western Timor in Late Miocene time and migrated toward the east. Thus, the tectonic evolution of this region is diachronous and youngs to the east. We conclude that the deep-seated high P/T metamorphic belt extrudes into shallow crustal levels as a first step, followed by doming at a later stage. The so-called ‘mountain building’ process is restricted to the second stage. We attribute this Quaternary rapid uplift to rebound of the subducting Australian continental crust beneath Timor after it achieved positive buoyancy, due to break-off of the oceanic slab fringing the continental crust. In contrast, Tanimbar in the east has not yet been affected by later doming. A wide spectrum of processes, starting from extrusion of the high P/T metamorphic rocks and ending with the later doming due to slab break-off, can be observed in the Timor–Tanimbar region.  相似文献   
58.
59.
Abstract: The Bulawan deposit is located in the porphyry copper belt of southwest Negros island, Philippines. Propylitic, K–feldspar, sericitic, and carbonate alteration types can be distinguished in the deposit. Propylite alteration occurs mainly in Cretaceous-Eocene andesitic lavas and agglomerates while K–feldspar, sericite and carbonate alteration types occur mostly in the Middle Miocene dacite porphyry breccia pipes and stocks which were intruded into the andesites. K-feldspar zones occur in the inner parts of the sericitized zone. Sericite alteration overprinted the propylitized and K-feldspar alteration zones, at lower temperature than epidote and chlorite in the propylitized zone. Carbonate alteration is associated with the mineralization in the center of the breccia pipes and along faults. Mineralization consists of gold-silver telluride ores that are hosted by the carbonate– and sericite-altered dacite porphyry breccia pipes. The Bulawan ores occur mainly as disseminations, but unlike many epithermal gold deposits, lack classical epithermal colloform and crustiform quartz veins. The ore minerals are sphalerite, galena, chalcopyrite, pyrite and tetrahedite-tennantite with minor amounts of electrum, calaverite, petzite, sylvanite, hessite, tellurobismuthite, coloradoite, altaite, and rucklidgeite. Electrum and telluride minerals are associated mostly with calcite and dolomite-ankerite minerals. Fluid inclusions in quartz and calcite in clasts of propylitized andesite in the breccia pipes homogenize from about 300° to 400°C while fluid inclusions in quartz, calcite and sphalerite within the dacite porphyry breccia pipes homogenize between 300° to 310°C. The ores were formed around 300°C from hydrothermal solutions with salinity of about 6. 6 wt % NaCl equivalent. The presence of sylvanite and calaverite as intergrowths with each other, and the Ag content of calaverite are consistent with the above temperature estimate. Based on paragenesis, the Bulawan deposit formed in a pyrite-stable environment, with pH between 3. 4 and 5. 5, fO2 between 10-32 to 10-30 atm, fS2 between 10-9.8 to 10-7.8 atm, fTe2 between 10-8.9 to 10-6.5 atm, and total sulfur content about 10-2.8 molal. The dominant reduced sulfur species in the ore solutions may have been H2S(aq), and the likely aqueous tellurium species were H2Te(aq) and H2TeO3(aq). The ore minerals in the Bulawan deposit were probably formed by mixing of slightly saline and low salinity fluids.  相似文献   
60.
Seismicity located by using the most recent data obtained from the high-gain seismograph network of Tohoku University shows that the deep seismic zone beneath northeastern Honshu, Japan, is composed of two thin planes which are parallel to each other and are 30–40 km apart. Focal mechanisms derived from the earthquakes in the upper plane are reverse-faulting, or, some of them, down-dip compression. As a contrast, those in the lower plane are down-dip extension. The location of the upper boundary of the descending lithospheric slab, inferred from the arrival-time difference between ScS and ScSp waves and from the travel-time anomaly of intermediate-depth earthquakes observed at the small-scale seismic array, coincides exactly with the upper plane of the double-planed deep seismic zone. Anelasticity (1/Q) structure of the upper mantle consists of three distinct zones: a high-Q (Qs− 1500) inclined lithospheric slab, an intennediate-Q (Qs−350) land-side mantle between the Pacific coast and the volcanic front, and a low-Q (Qs − 100) land-side mantle between the volcanic front and the coast of the Japan Sea.The evidence obtained here provides valuable information as to the definition of the type of mechanism producing the plate motion beneath island arcs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号